


# Savitribai Phule Pune University Board of Studies - Automobile and Mechanical Engineering Undergraduate Program - Mechanical Engineering (2019 pattern) Honors in "Electric Vehicles"

| Course<br>Code | Course Name                               | Schomo |      |     |     | ination Scheme<br>and Marks |    |    | Credit |       |    |    |     |       |
|----------------|-------------------------------------------|--------|------|-----|-----|-----------------------------|----|----|--------|-------|----|----|-----|-------|
|                |                                           |        | PR   | TUT | ISE | ESE                         | TW | PR | OR     | TOTAL | TH | PR | TUT | TOTAL |
| Semester-V     |                                           |        |      |     |     |                             |    |    |        |       |    |    |     |       |
| 302031MJ       | e-Vehicle Technology                      | 4      | -    | -   | 30  | 70                          | -  | -  | -      | 100   | 4  | -  | -   | 4     |
| 302032MJ       | EV Lab                                    | -      | 2    | -   | -   | -                           | 50 | -  | -      | 50    | -  | 1  | -   | 1     |
|                | Total                                     | 4      | 2    | -   | 30  | 70                          | 50 | -  | -      | 150   | 4  | 1  | -   | 5     |
| Semester-VI    |                                           |        |      |     |     |                             |    |    |        |       |    |    |     |       |
| 302033MJ       | e-Vehicle System Design                   | 4      | -    | -   | 30  | 70                          | -  | -  | -      | 100   | 4  | -  | -   | 4     |
|                | Total                                     | 4      | -    | -   | 30  | 70                          | -  | -  | -      | 100   | 4  | -  | -   | 4     |
|                | Semester-VII                              |        |      |     |     |                             |    |    |        |       |    |    |     |       |
| 302034MJ       | Modelling and Simulation of EHV           | 4      | -    | -   | 30  | 70                          | -  | -  | -      | 100   | 4  | -  | -   | 4     |
| 302035MJ       | EV Simulation Lab                         | -      | 2    | -   | -   | -                           | 50 | -  | -      | 50    | -  | 1  | I   | 1     |
|                | Total                                     | 4      | 2    | -   | 30  | 70                          | 50 | -  | -      | 150   | 4  | 1  | I   | 5     |
|                | Ser                                       | nest   | er-V | III |     |                             |    |    |        |       |    |    |     |       |
| 302036MJ       | e-Vehicle Standards, Charging &<br>Safety | 4      | -    | -   | 30  | 70                          | -  | -  | -      | 100   | 4  | -  | -   | 4     |
| 302037MJ       | Seminar                                   | -      | -    | 2   | -   | -                           | 50 | -  | -      | 50    | -  | -  | 2   | 2     |
|                | Total                                     | 4      | -    | 2   | 30  | 70                          | 50 | -  | -      | 150   | 4  | -  | 2   | 6     |

Abbreviations: TH: Theory, PR: Practical, TUT: Tutorial, ISE: In-Semester Exam, ESE: End-Semester Exam, TW: Term Work, OR: Oral

### 1. Rules and Regulations for Honors / Minors Programs

**R1.1** It is absolutely not mandatory to any student to opt for Honors or Minors Program. Choice is given to individual students to undertake Honors/Minors programs from the third year engineering (Fifth Semester) to fourth year engineering (Eighth Semester). Honors/Minors programs will be opted from offered programs by SPPU. Once selected he/she will not be permitted to change the Honors/Minors program in forthcoming semesters.

**R1.2** The registration for Honors/Minors Programme will lead to gain additional credits to such students. The result of Honors/Minors Program will get reflected in ledgers to be maintained at University only. After the completion of the Honors/Minors program by concerned students, details of credits earned in Honors/Minors program be printed in the mark sheet of eighth semester. For those students, who will not be able to complete the Honors/Minors program, details about the additional credits earned will not get printed.

**R1.3** Credits earned through registration and successful completion of the Honors/Minors Programme will **not** be considered for the calculation of SGPA or CGPA.

As per the standard practice, SGPA and CGPA calculations will be done with common base only by considering mandatory credits assigned for the Bachelor programme as per the structure approved by the Academic Council.

**R1.4** Students once registered for the programme need to complete all credits assigned for the specific Honors and Minors Programme in the period of 4 years from the Semester-V. Degree with Honors/Minors will be awarded only after the completion of Honors/Minors Programme along with respective UG program degree.

Students may opt to cancel the registration for Honors/Minors within this period of 4 years. After 4 years expire automatically Bachelor's degree will be awarded to such a student provided he/she has earned the credits needed for graduation.

**R1.5** Backlog Honors/Minors courses will not contribute to the decision of A.T.K.T.

## 2. Examination Scheme:

**R2.1** Examinations for Honors/Minors Program will be organized at the University Level. Question papers will be common for all students who had opted/registered for the specific Honors/Minors Program. Evaluation of answer books for the Honors/Minors program will be done at the university level.

**R.2.2** Additional examination fees as per prevailing rules and regulations will be charged from those students who had registered for Honors/Minors Program to match the expenses for paper setting and the assessment of answer books at the CAP Centre.

### Instructions:

- Minimum number of Experiments/Assignments in PR/Tutorial shall be carried out as mentioned in the syllabi of respective courses.
- Assessment of tutorial work has to be carried out similar to term-work. The Grade cum marks for Tutorial and Term-work shall be awarded on the basis of **continuous** evaluation.

| <b>302031MJ: e-Vehicle Technology</b>                      |                                                                                                                                                   |                                                                                                                 |                                                                                |                              |                    |  |  |  |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------|--------------------|--|--|--|
| Teach                                                      | ing Scheme                                                                                                                                        | Credi                                                                                                           |                                                                                | Examination Scheme           |                    |  |  |  |
| Theory                                                     | 4 Hrs./Week                                                                                                                                       | Theory                                                                                                          | 4                                                                              | In-Semester                  | 30 Marks           |  |  |  |
|                                                            |                                                                                                                                                   |                                                                                                                 |                                                                                | End-Semester                 | 70 Marks           |  |  |  |
| <b>Prerequisite</b><br>Systems.                            | s: Basics of Elect                                                                                                                                | rical and Elec                                                                                                  | etronics, E                                                                    | ngineering Chemi             | istry, Engineering |  |  |  |
| <b>Course Obje</b><br>To understan                         | ectives:<br>d the basic technolo                                                                                                                  | ogies used in e-                                                                                                | vehicles an                                                                    | d the necessary ad           | vancements in it.  |  |  |  |
| CO1. UNE<br>CO2. CLA<br>CO3. IDEN<br>CO4. ILLU<br>CO5. EVA | ion of the course the<br>DERSTAND the bas<br>SSIFY the different<br>NTIFY and EVALU<br>JSTRATE the issue<br>LUATE the different<br>COVER and CORR | ics related to e-<br>hybrid vehicle<br>ATE the signif<br>es related to bat<br>nt driving syste<br>ELATE the adv | -vehicle<br>ss<br>ficance of L<br>teries and r<br>ems for e-ver<br>vancement i | remedial measures<br>chicles | nd BMS             |  |  |  |
|                                                            |                                                                                                                                                   | Course (                                                                                                        |                                                                                |                              |                    |  |  |  |
| Unit 1 e-vehicle technology - Introduction                 |                                                                                                                                                   |                                                                                                                 |                                                                                |                              |                    |  |  |  |
| Steps in form                                              | ogy, Significance of<br>nation of battery party<br>ystem, Mechanical t                                                                            | ck and its calcu                                                                                                | lation for s                                                                   | specific application         | -                  |  |  |  |
| Unit 2                                                     | Hybridization in                                                                                                                                  | e-vehicles                                                                                                      |                                                                                |                              |                    |  |  |  |
| IC engine and<br>energy source                             | bridization in e-vehi<br>d Battery (with vari<br>tes with batteries.<br>l in e-vehicles.                                                          | ous types), Hy                                                                                                  | bridization                                                                    | of Solar and other           | non-conventional   |  |  |  |

## Unit 3 Lithium Ion Batteries

Introduction to lithium batteries and its extensions in different applications. Working principle, advantages and disadvantages. Different chemistries of lithium ion batteries. Evaluation of various battery parameters: State of charge, Depth of discharge, charging rate, etc. current and voltage variation as per different loads. Issues and remedies for battery balancing. Availability of lithium ion batteries and government policies to fulfill the demands of lithium batteries for Indian e-vehicles.

# Unit 4 Other Batteries and Battery Management System

Nickel bromide: Working mechanism, advantages, disadvantages, applications; Lead acid batteries: Working mechanism, advantages, disadvantages, applications; Nickel-Metal Hydride Batteries: Working mechanism, advantages, disadvantages, applications; Li Ion supercapacitors: Working mechanism, advantages, disadvantages, applications. Introduction to BMS, BMS sensing and high voltage control, Thermal control and Protection.

### Unit 5 Introduction to Drive system for e-vehicle

Introduction to drive systems in EV, Types of motors, selection and size of motors Classification and general characteristics, Motor drives and principle of operation and performance, Mechanical and electrical connections of motors.

### Unit 6 Advancement in e-vehicles

Integration of IoT in e-vehicle, Wireless sensor networks need for IoT, Intelligent Transport Systems, Degradation and disposal of batteries, modes of fast and efficient charging, and availability of charging stations as per Indian road conditions. Types of standards. Safety rules and regulations.

#### Books and other resources

#### **Text Books:**

- 1. Advances in Battery Technologies for Electric Vehicles, by Bruno Scrosati, Jürgen Garche and Werner Tillmetz, Woodhead Publishing Series in Energy: Number 80.
- 2. Behaviour of Lithium-Ion Batteries in Electric Vehicles Battery Health, Performance, Safety, and Cost by Gianfranco Pistoia Boryann Liaw.
- 3. Fundamentals And Applications of Lithium-Ion Batteries in Electric Drive Vehicles Jiuchun Jiang and Caiping Zhang Beijing Jiaotong University, Wiley publications.
- 4. Electric Motor drives Modelling, Analysis & Control, R. Krishnan, PHI India, Ltd.

### **References Books:**

- 1. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles Third Edition, Mehrdad Ehsani Yimin Gao Stefano Longo Kambiz M. Ebrahimi
- 2. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles Fundamentals, Theory, and Design by Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi.

| <b>302032MJ:</b> EV Lab                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                           |                    |                    |  |  |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------|--------------------|--------------------|--|--|
| Teaching Scheme                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Credi                                                          | ts                        | Examination Scheme |                    |  |  |
| Practical                                                           | 2 Hrs./Week Practical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                | 1                         | Term Work          | 50 Marks           |  |  |
| Prerequisites:                                                      | Basics of Electr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ical and Electror                                              | nics, Engine              | ering Systems.     |                    |  |  |
| Course Object<br>To have hands-                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f using basic e-v                                              | vehicle tech              | nologies and their | advancements.      |  |  |
| CO2. EVALUA<br>CO3. COMPA<br>CO4. DEMON<br>discharge<br>CO5. EVALUA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es and capacities<br>ng<br>ous power conr<br>of specific batte | nection typ               |                    | ontrol and battery |  |  |
| The learner sha<br>1. Study o                                       | Il complete the for the for the former of basic component of basic com | <b>Term</b><br>following activit                               | Work<br>y as a Term<br>s. |                    |                    |  |  |

- 11. Case study of 2/3/4 wheeler e-vehicle/hybrid vehicle
- 12. Industry visit

|                                 | ~ .                                                                               |                                    |                           |                                         |                    |  |  |
|---------------------------------|-----------------------------------------------------------------------------------|------------------------------------|---------------------------|-----------------------------------------|--------------------|--|--|
| <b>Teaching Scheme</b>          |                                                                                   | Credi                              | its                       | <b>Examination Scheme</b>               |                    |  |  |
| Theory                          | 4 Hrs./Week                                                                       | Theory 4                           |                           | In-Semester                             | 30 Marks           |  |  |
|                                 |                                                                                   |                                    |                           | End-Semester                            | 70 Marks           |  |  |
| -                               | : Engineering Mat<br>inematics and Dyn                                            |                                    |                           |                                         | terial Science and |  |  |
| Course Objec                    | ctives:                                                                           |                                    |                           |                                         |                    |  |  |
| To understand                   | d, design and devel                                                               | op e-vehicles.                     |                           |                                         |                    |  |  |
| Course Outco                    | omes:                                                                             |                                    |                           |                                         |                    |  |  |
| On completion                   | on of the course the                                                              | e learner will b                   | e able to;                |                                         |                    |  |  |
| CO1. DI                         | SCOVER wheel ba                                                                   | used steering sy                   | vstems                    |                                         |                    |  |  |
| CO2. CL                         | ASSIFY and EVA                                                                    | LUATE susper                       | nsion syster              | ns.                                     |                    |  |  |
| CO3. US                         | E of tyres and brak                                                               | ting systems.                      |                           |                                         |                    |  |  |
| CO4. DE                         | SIGN of powertrai                                                                 | ins and allied tr                  | ansmission                | systems.                                |                    |  |  |
| CO5. CA                         | TAGORIZE batter                                                                   | ry pack layouts                    |                           |                                         |                    |  |  |
| CO6. DE                         | EVELOP body fram                                                                  | ne for e-Vehicle                   | es.                       |                                         |                    |  |  |
|                                 |                                                                                   | Course (                           | Contents                  |                                         |                    |  |  |
| Unit 1                          | Steering System                                                                   |                                    |                           |                                         |                    |  |  |
| Configuration<br>drive with sid | , Topology design<br>(Bicycle & Dicyc<br>ecars Layouts), 4V<br>and Types of steer | cle Layouts), 3<br>V Configuration | W Configu<br>n (2/3/4 Sea | ration (Delta, Tac<br>ater), Geometry o | lpole, Two-wheel   |  |  |
|                                 | Suspension System                                                                 |                                    |                           |                                         |                    |  |  |

Suspension (which includes a Short-long arm with coil spring-over-shock absorber), Rear Suspension (which includes a multi-link and Panhard rod located aluminum beam), Design of Shock Absorbers, Coil Springs and linkages.

# Unit 3 Wheels and Braking System

Classification, Topology design and Types of wheels/Tyres and Braking Systems, Vehicle and body centre of gravity for movement design of e-Vehicles, Integration of Wheel with traction motor, Braking system, Regenerative Braking.

# Unit 4 Powertrain, Differential and Transmission System

Gear-Box Design, Hub Motor Direct Drive Configuration, Centrally Mounted Configuration, Front/Rear wheel coupling to the drive motor.

Drive Layout - One/Two / Four/All-wheel Drive Layout, Transmission System Component design.

Differential Classification and Types (Open, Locked, Spool/Welded, Limited Slip, Torsen, Active, Torque Vectoring)

# Unit 5 Battery Compartment

Layout specific Battery Location Selection, Constructional details of Batteries (Battery Pack Structure), Battery Compartment Design for Crashworthiness and Cooling, Vent Management System, Pack Cooling System, Battery life analysis, Battery Performance degradation modelling and analysis.

## Unit 6 Roll-cage/Body-Frame

Ergonomics based Roll-cage/Frame Design, Packaging Design, Structural Design aspect of Roll-cage/Body-Frame, Impact/Crash Analysis, Optimization, Vehicle Dynamics

### Books and other resources

### **Text Books:**

- 1. John C. Dixon, J. C., (2009), "Suspension Geometry and Computation", Wiley, NY, ISBN-13: 978-0470510216
- Matschinsky, M., (1997), "Road Vehicle Suspensions," Wiley, ISBN: 978-1-860-58202-8
- 3. Guiggiani, M., (2018), "The Science of Vehicle Dynamics: Handling, Braking, and Ride of Road and Race Cars," Springer, ISBN-13 : 978-3319732190
- 4. Milliken, W. F., (2002), "Chassis Design: Principles and Analysis," SAE International, ISBN-13 : 978-0768008265